
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells

pmid: 34147740
Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells
Biohythane is alternative fuel to replace fossil fuel for car combustion, and biohythane generation could be potential pathway for energy recovery from wastewater treatment. Microbial electrolysis cell (MEC) is electrochemical technique to convert waste to methane and hydrogen gas for biohythane generation, but the feasibility and stability of MEC needs further investigation to assure sustainable energy recovery. System configuration is paramount factor for electrochemical reaction and mass transfer, and this study was to investigate the configuration impact (single vs dual chamber) of MEC for biohythane generation rate and stability. This study showed that dual-chamber MEC could separate methane and hydrogen gas production in the anode and cathode, and combined both together to produce biohythane. To reduce ohmic resistance for higher current, cation exchange membrane (CEM) was removed from dual-chamber to single-chamber MEC. However, free hydrogen diffusion was allowed in the single chamber since CEM was removed. The diffused hydrogen and substrate towards the cathode would favor the methanogen growth, and thus the hydrogen was consumed to reduce the biohythane generation and energy recovery efficiency (i.e., 7.5 × 10-3 reduced to 5.7 × 10-3 kWh kg-1 degraded COD day-1 after converting dual-chamber to single-chamber MEC). Absolute abundance of methanogen in single-chamber MEC was greatly boosted, as Methanosarcina and Methanobacteriale on the anode surface, increased by 132% and 243%, respectively, while the original dual-chamber MEC could maintain Geobacter growth for high current generation. This is the keystone study to demonstrate the importance of dual-chamber MEC for the feasibility and stability for the biohythane generation, building up the foundation to use electrochemical device to convert the organic waste to the alternative biohythane.
- University of Mary United States
- Washington State University United States
- Wuhan Polytechnic University China (People's Republic of)
- Tsinghua University China (People's Republic of)
- Wuhan University of Science and Technology China (People's Republic of)
Bioelectric Energy Sources, Electrochemical Techniques, Electrolysis, Electrodes, Methane, Hydrogen
Bioelectric Energy Sources, Electrochemical Techniques, Electrolysis, Electrodes, Methane, Hydrogen
1 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
