Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Research
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells

Authors: Shuai Luo; Peng Liang; Xia Huang; Heng Yang; Xiaoyuan Zhang; Kai He; Boya Fu; +1 Authors

Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells

Abstract

Biohythane is alternative fuel to replace fossil fuel for car combustion, and biohythane generation could be potential pathway for energy recovery from wastewater treatment. Microbial electrolysis cell (MEC) is electrochemical technique to convert waste to methane and hydrogen gas for biohythane generation, but the feasibility and stability of MEC needs further investigation to assure sustainable energy recovery. System configuration is paramount factor for electrochemical reaction and mass transfer, and this study was to investigate the configuration impact (single vs dual chamber) of MEC for biohythane generation rate and stability. This study showed that dual-chamber MEC could separate methane and hydrogen gas production in the anode and cathode, and combined both together to produce biohythane. To reduce ohmic resistance for higher current, cation exchange membrane (CEM) was removed from dual-chamber to single-chamber MEC. However, free hydrogen diffusion was allowed in the single chamber since CEM was removed. The diffused hydrogen and substrate towards the cathode would favor the methanogen growth, and thus the hydrogen was consumed to reduce the biohythane generation and energy recovery efficiency (i.e., 7.5 × 10-3 reduced to 5.7 × 10-3 kWh kg-1 degraded COD day-1 after converting dual-chamber to single-chamber MEC). Absolute abundance of methanogen in single-chamber MEC was greatly boosted, as Methanosarcina and Methanobacteriale on the anode surface, increased by 132% and 243%, respectively, while the original dual-chamber MEC could maintain Geobacter growth for high current generation. This is the keystone study to demonstrate the importance of dual-chamber MEC for the feasibility and stability for the biohythane generation, building up the foundation to use electrochemical device to convert the organic waste to the alternative biohythane.

Related Organizations
Keywords

Bioelectric Energy Sources, Electrochemical Techniques, Electrolysis, Electrodes, Methane, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
bronze