Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Research
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Centralized iron-dosing into returned sludge brings multifaceted benefits to wastewater management

Authors: Zhetai Hu; Haoran Duan; Zhiyao Wang; Jing Zhao; Liu Ye; Zhiguo Yuan; Min Zheng; +1 Authors

Centralized iron-dosing into returned sludge brings multifaceted benefits to wastewater management

Abstract

Iron salts (i.e. FeCl3) are the most used chemicals in the urban wastewater system. Iron is commonly dosed into sewage or the mainstream system, which provides multiple benefits such as enhanced phosphorus removal and improved sludge settleability/dewaterability. This study reported and demonstrated a new approach that dosed FeCl3 into returned sludge in order to bring two more benefits to wastewater management: short-cut nitrogen removal via the nitrite pathway and less biomass production. This approach is achieved based on our findings that with similar amount of FeCl3, centralized iron dosing into a sidestream sludge unit generated iron concentration two orders of magnitude higher than the common mainstream dosing (e.g. 10-40 mg Fe/L-wastewater), leading to sludge acidification (pH = 2.1) with Fe (III) hydrolysis. Together with accumulated nitrite in the supernatant of the sludge, ppm-level of free nitrous acid was generated and thus enabled sludge disintegration, cell lysis, and selective elimination of nitrite-oxidizing bacteria (NOB). Long-term effects on nitrifying bacteria and overall reactor performance were evaluated using two laboratory reactor experiments for over one year. The experimental reactor showed stable nitrite accumulation with an average NO2-/(NO2- + NO3-) ratio above 80% and ∼30% observed biomass yield reduction compared to those in control reactors. In addition, the centralized sludge dosing strategy still provided benefits such as improved settleability and dewaterability of sludge and enhanced phosphorus removal.

Related Organizations
Keywords

Sewage, Iron, Wastewater, Waste Disposal, Fluid, Bioreactors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
bronze