
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biomass conversion and radiocaesium (Rad-Cs) leaching behaviors of radioactive grass in anaerobic wet fermentation systems: Effects of pre-treatments

pmid: 38309060
Persistent concerns regarding environmental hazards arise from the difficulty in disposing of radioactive plant-based wastes originating from the nuclear accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) in Japan in 2011. In this study, three anaerobic digestion (AD) strategies were proposed: Sole anaerobic wet fermentation, and wet fermentations with either alkaline-heat or ultrasonic pre-treatment, which were employed for long-term anaerobic treatment of a genuine radioactive grass stemming from the FNPP accident. The objectives of this work are to investigate the effects of pre-treatments on biomass conversion efficiency and to gain insight into the leaching behavior of radiocaesium (Rad-Cs) within AD processes. Experimental results indicate that by introducing alkaline-heat and ultrasonic pre-treatments to AD systems, the removal efficiencies of total solids (TS) from the raw grass increased by 60.8 % and 42.5 %, respectively, compared to sole wet fermentation. Pre-treatments have been shown to enhance the stability of AD systems, both in terms of enhancing methane production and mitigating pH fluctuations triggered by the accumulation of organic acids. Remarkably, even though the Rad-Cs leaching rate was highest when the AD system was fed with the alkaline-heat pre-treated grass, it remained unsatisfactory at only 5.77 %. We inadvertently isolated a soil-like component from the raw grass, and analyzed both its proportion in the raw grass and the radioactivity intensity. The results indicate that although the soil constituted only 9.51 % TS of the raw grass, it accounted for a significant 81.35 % of the total radioactivity. The soil, which has a pronounced affinity for ionic Cs, being mixed into the raw grass, was identified as the primary factor limiting the leaching efficiency of Rad-Cs throughout both the pre-treatment and wet fermentation phases.
- Fuzhou University China (People's Republic of)
- Fuzhou University China (People's Republic of)
- Nanjing University of Science and Technology China (People's Republic of)
- National Institute for Environmental Studies Japan
- National Institute for Environmental Studies Japan
Soil, Radioactivity, Japan, Cesium Radioisotopes, Radiation Monitoring, Fermentation, Fukushima Nuclear Accident, Anaerobiosis, Biomass, Poaceae
Soil, Radioactivity, Japan, Cesium Radioisotopes, Radiation Monitoring, Fermentation, Fukushima Nuclear Accident, Anaerobiosis, Biomass, Poaceae
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
