Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of catalytic esterification on the friction and wear performance of bio-oil

Authors: Hongming Xu; Hongming Xu; Xianguo Hu; Xiaojing Zheng; Karl D. Dearn; Yufu Xu;

Effect of catalytic esterification on the friction and wear performance of bio-oil

Abstract

Abstract The tribological response of bio-oil derived from Spirulina algae has been assessed, according to the choice of catalyst during esterification. The bio-oil was upgraded over the selected catalysts of KF/HZSM-5 and KF/Al 2 O 3 with ethanol. Physical and chemical properties were assessed throughout with the crystal structure of the catalysts was characterized by X-ray diffraction (XRD), chemical groups and components of the bio-oil by Fourier Transform infrared spectroscopy (FTIR) and Gas Chromatograph–Mass Spectroscopy (GC–MS). Tribological experiments were conducted using a bespoke piston ring-on-cylinder liner tribometer. Worn surfaces were observed by Scanning Electron Microscope (SEM), and the elemental contents and valences were tested by X-ray Energy Dispersive Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS). It is shown that choice of catalyst used during the upgrading of the bio-oil has a significant effect on tribological performance. Catalytic esterification improved friction resistance and the anti-wear properties of the bio-oil. KF/Al 2 O 3 was a better catalyst for doing this than KF/HZSM, a result of the ester and organic groups present in the KF/Al 2 O 3 upgraded bio-oil. These groups acted to form a protective tribo-film between surfaces.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%