
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Non-fullerene acceptor photostability and its impact on organic solar cell lifetime

handle: 10754/670166
Non-fullerene acceptor photostability and its impact on organic solar cell lifetime
The development of non-fullerene acceptors (NFAs) has facilitated the realization of efficient organic solar cells (OSCs) with minimal burn-in losses and excellent long-term stability. However, the role of NFA molecular structures on device stability remains unclear, limiting commercialization of NFA-based OSCs. Herein, the photostability of 10 OSC devices, fabricated with various NFAs (O-IDTBR, EH-IDTBR, ITIC, and ITIC-M) blended with donor polymers (PTB7-Th, PffBT4T-2OD, and PBDB-T), is investigated. O-IDTBR and EH-IDTBR form highly stable devices with all three polymers, whereas ITIC and ITIC-M devices suffer from burn-in losses and long-term degradation. Conformational instability is found to be responsible for the poor photostability of ITIC and ITIC-M, resulting in poor device stability. Twisting and potential breakage of the chemical bond that links the end group to the main backbone of ITIC and ITIC-M molecules causes undesirable conformational changes. Potential strategies to overcome such detrimental photo-induced conformational changes in NFAs are proposed.
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- King Abdullah University of Science and Technology Saudi Arabia
- Cardiff University United Kingdom
- Hong Kong Polytechnic University China (People's Republic of)
- Queen Mary University of London United Kingdom
Polymerkemi, Polymer Chemistry
Polymerkemi, Polymer Chemistry
4 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).53 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
