Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cronfa at Swansea Un...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Zoology
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Zoology
Article . 2008
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: Tests with an easy model species, Homo sapiens

Authors: Halsey, Lewis G.; Shepard, Emily L. C.; Hulston, Carl J.; Venables, Michelle C.; White, Craig R.; Jeukendrup, Asker E.; Wilson, Rory P.;

Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: Tests with an easy model species, Homo sapiens

Abstract

An important element in the measurement of energy budgets of free-living animals is the estimation of energy costs during locomotion. Using humans as a particularly tractable model species, we conducted treadmill experiments to test the validity of tri-axial accelerometry loggers, designed for use with animals in the field, to estimate rate of oxygen consumption (VO2: an indirect measure of metabolic rate) and speed during locomotion. The predictive power of overall dynamic body acceleration (ODBA) obtained from loggers attached to different parts of the body was compared to that of heart rate (fH). When subject identity was included in the statistical analysis, ODBA was a good, though slightly poorer, predictor of VO2 and speed during locomotion on the flat (mean of two-part regressions: R2=0.91 and 0.91, from a logger placed on the neck) and VO2 during gradient walking (single regression: R2=0.77 from a logger placed on the upper back) than was fH (R2=0.96, 0.94, 0.86, respectively). For locomotion on the flat, ODBA was still a good predictor when subject identity was replaced by subject mass and height (morphometrics typically obtainable from animals in the field; R2=0.92 and 0.89) and a slightly better overall predictor than fH (R2=0.92 and 0.85). For gradient walking, ODBA predicted VO2 more accurately than before (R2=0.83) and considerably better than did fH (R2=0.77). ODBA and fH combined were the most powerful predictor of VO2 and speed during locomotion. However, ODBA alone appears to be a good predictor and suitable for use in the field in particular, given that accelerometry traces also provide information on the timing, frequency and duration of locomotion events, and also the gait being used.

Countries
United Kingdom, Australia
Related Organizations
Keywords

Adult, Male, Heart rate, Acceleration, 590, Oxygen consumption, Speed, 0608 Zoology, Metabolic rate, Oxygen Consumption, Heart Rate, Predictive Value of Tests, Accelerometry, Animals, Humans, Gait, Monitoring, Physiologic, Energy expenditure, Female, Energy Metabolism, Locomotion

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research