
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Simple off-line flash pyrolysis procedure with in situ silylation for the analysis of hydroxybenzenes in humic acids and coals

pmid: 12685570
A simple device consisting of a glass pyrolysis chamber fitted for a commercial resistively heated pyrolysis probe and connected to a solvent desorption tube for air monitoring was applied to off-line pyrolysis under silylating conditions of humic acids (soil, lake) and coals. Samples were flash pyrolysed at 700 degrees C in the presence of excess hexamethyldisilazane, and evolved products were swept off by a nitrogen stream and trapped onto a charcoal filter from where they were desorbed with dichloromethane and analysed by gas chromatography (GC)-mass spectrometry. Humic acids afforded trimethylsilyl (TMS) ethers of phenols, 2-methoxyphenols (guaiacols), 2,6-dimethoxyphenols (syringols), and dihydroxy and trihydroxybenzenes as major products. TMSoxy benzenes were the principal products observed from pyrolysis/silylation of coals. In comparison with conventional pyrolysis, the in-situ derivatisation process enhances the levels of phenols with respect to hydrocarbons and improves the GC separation of isomers (e.g. meta- from para-cresol). With respect to tetramethylammonium hydroxide thermochemolysis, pyrolysis/silylation operates under milder conditions and permits discrimination between free and methylated hydroxy groups. The performance of the method for the quantitative determination of evolved product is described. Yields of evolved silylated mono and dihydroxybenzenes occur in the mg/g range with relative standard deviations generally between 16 and 30%.
- Alma Mater Studiorum University of Bologna Italy
- Nottingham Trent University United Kingdom
Coal, Phenol, Gas Chromatography-Mass Spectrometry, Humic Substances, N-Acetylneuraminic Acid
Coal, Phenol, Gas Chromatography-Mass Spectrometry, Humic Substances, N-Acetylneuraminic Acid
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
