
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
SMART behavior under over-pressurizing accident conditions
Abstract SMART (System-integrated Modular Advanced ReacTor) is an integral reactor of 330 MW capacity with passive safety features under development in Korea. The design is developed by combining the firmly-established commercial reactor technologies with new and advanced technologies such as industry proven KOFA (Korea Optimized Fuel Assembly) based nuclear fuels, self-pressurizing pressurizer, helically coiled once-through steam generators, and new control concepts. The design of SMART focuses on enhancing the safety and reliability of the reactor by employing inherent safety features such as low core power density, elimination of large break loss of coolant accident, etc. In addition, in order to prevent the progression of emergency situations into accidents, the SMART is provided with a number of engineered safety features such as Passive Residual Heat Removal System, Passive Emergency Core Cooling System, Safeguard Vessel, and Passive Containment Over-Pressure Protection System. This paper presents an overview of the SMART design, characteristics of it’s safety systems, and results of over-pressure accident analyses. The results of the accident analyses show that the SMART provides the inherent over-pressure protection capability for design basis accidents without actuation of any protection devices such as safety valves, rupture disks, etc.
- Korea Atomic Energy Research Institute Korea (Republic of)
- National Research Council of Science and Technology Korea (Republic of)
- National Research Foundation of Korea Korea (Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).38 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
