Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
IRDB
Article . 2006
Data sources: IRDB
IRDB
Article . 2006
Data sources: IRDB
IRDB
Article . 2006
Data sources: IRDB
IRDB
Article . 2006
Data sources: IRDB
IRDB
Article . 2006
Data sources: IRDB
versions View all 11 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methane reforming with CO2 in molten salt using FeO catalyst

Authors: Nobuyuki Gokon; Yoshinori Oku; Hiroshi Kaneko; Yutaka Tamaura;

Methane reforming with CO2 in molten salt using FeO catalyst

Abstract

Abstract Methane dry reforming with CO2 using FeO powder in molten salt has been investigated at various flow rates of CH4/CO2 mixed gases (CH4/CO2=1) between 50 and 400 ml/min at 1223 K in an infrared furnace. This work is carried out to determine the usefulness of this method for the chemical storage of solar energy. The CH4/CO2 mixed gases passing through the molten salt (Na2CO3/K2CO3=1) containing the FeO powder were catalytically decomposed into CO, H2 and H2O. The product gas mole ratios, CO/H2/H2O, were shown to be 3:1:1 for a high flow rate of 200 ml/min and to be CO/H2=2:1 for a low flow rate of 50 ml/min. The results were explained in terms of the kinetics of the CH4-reforming reaction and the thermodynamics of the redox process of FeO powder mixed in the molten salt; CH 4 +2FeO⇒2Fe+H 2 +CO+H 2 O Fe+CO 2 ⇒FeO+CO for a high flow rate, and FeO+CH 4 ⇒Fe+2H 2 +CO Fe+CO 2 ⇒FeO+CO for a low flow rate.

Country
Japan
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Average