
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Decomposing multi-regional dynamic energy process models

Abstract The energy process model with geometric distributed lag (GDL) demand, called the energy GDL process model, often distinguishes several regions. This paper presents a new decomposition approach, based on the Dantzig–Wolfe principle, to decompose such a model by region in order to provide a more manageable tool for long-run energy planning and energy-related environmental protection decision making. The new decomposition approach is required because most energy GDL process models cannot be converted into optimization problems, so that the existing linear or nonlinear decomposition principles cannot be applied to such models directly. A two-region energy GDL process model of supplies and demands of oil, gas, electricity, and coal in Canada is presented and solved with the new decomposition approach, to aid in understanding the performance of the new decomposition procedure.
- University of Waterloo Canada
- Ryerson University Canada
- Polytechnic University Japan
- Ryerson University Canada
- Polytechnic University Japan
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
