
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Improving the performance of graphite anodes in rechargeable lithium batteries

Authors: Peter G. Bruce; F. Coowar; Colin A. Vincent; Alasdair M. Christie;
Abstract
Abstract A low cost graphite was examined as a negative electrode for rechargeable lithium batteries. The use of an electrolyte solution consisting of LiPF6 (1 mol dm−3) in ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 2:1 resulted in a capacity loss of 35% on the first cycle. When small quantities of dimethyl pyrocarbonate (DMPC) were added to the binary electrolyte system, the capacity loss on the first cycle was only 18% and thereafter a practical capacity value of 357 mA h g−1 was sustained for more than 50 cycles, representing more than 2000 h of cycling.
Related Organizations
- University of St Andrews United Kingdom
- University of St Andrews United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
11
Average
Top 10%
Average