Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Sciences
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Emission factors of polycyclic aromatic hydrocarbons from domestic coal combustion in China

Authors: Baohui Yin; Zhipeng Bai; Chunmei Geng; Xiaoyu Liu; Yang Xiaoyang; Jianhua Chen; Ren Lihong;

Emission factors of polycyclic aromatic hydrocarbons from domestic coal combustion in China

Abstract

Domestic coal stove is widely used in China, especially for countryside during heating period of winter, and polycyclic aromatic hydrocarbons (PAHs) are important in flue gas of the stove. By using dilution tunnel system, samples of both gaseous and particulate phases from domestic coal combustion were collected and 18 PAH species were analyzed by GC-MS. The average emission factors of total 18 PAH species was 171.73 mg/kg, ranging from 140.75 to 229.11 mg/kg for bituminous coals, while was 93.98 mg/kg, ranging from 58.48 to 129.47 mg/kg for anthracite coals. PAHs in gaseous phases occupied 95% of the total of PAHs emission of coal combustion. In particulate phase, 3-ring and 4-ring PAHs were the main components, accounting for 80% of the total particulate PAHs. The total toxicity potency evaluated by benzo[a]pyrene-equivalent carcinogenic power, sum of 7 carcinogenic PAH components and 2,3,7,8-tetrachlorodibenzodioxin had a similar tendency. And as a result, the toxic potential of bituminous coal was higher than that of anthracite coal. Efficient emission control should be conducted to reduce PAH emissions in order to protect ecosystem and human health.

Related Organizations
Keywords

China, Coal, Particulate Matter, Gases, Polycyclic Aromatic Hydrocarbons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%