
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Absorption of organic fluid mixtures in plate heat exchangers

It is well known that the absorber is the key component in energy conversion systems that are based on absorption cycles. This paper describes an experimental investigation into the absorption process of organic fluid mixtures in an absorption system which has a spray and a plate heat exchanger. The absorber consists of an adiabatic mixing chamber with a spray, where the solution that is weak in refrigerant is sprayed into the refrigerant vapour. A two-phase mixture is formed and enters a plate heat exchanger, where the solution is cooled to complete the absorption process. We carried out experiments with different types of spray nozzles using the organic fluid mixtures methanol–tetraethyleneglycol dimethylether (TEGDME) and trifluoroethanol (TFE)–TEGDME. We analyse how the solution mass flow rate, absorber pressure and cooling water temperature affected the absorber performance and we discuss the results in terms of the absorber load, absorbed mass flux, degree of subcooling of the solution at the absorber outlet, solution film heat and mass transfer coefficients. The results indicate that the absorption system proposed is suitable for relatively low pressures. For water temperatures of 30 °C and absorber pressures between 2 and 6 kPa, the absorption rates for TFE–TEGDME were 1 to 2.5 g·s−1·m−2. The corresponding values for methanol–TEGDME with absorber pressures between 10 and 15 kPa were 0.4 to 1.2 g·s−1·m−2.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
