Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A methodology for sizing a trigeneration plant in mediterranean areas

Authors: E. Cardona; Antonio Piacentino;

A methodology for sizing a trigeneration plant in mediterranean areas

Abstract

Combined heat and power production is an old and well-known technique for the rational use of energy and, thanks to more than fifty years of experience, the state of art can be considered very advanced from a technological point of view. Trigeneration, that is combined electric, heat and cooling energy production, is however a quite recent technology and is becoming economically viable thanks to the commercial spread of absorption chillers. In fact, a well-projected trigeneration plant can achieve better results than a cogenerative one. The CHCP plant benefits over CHP will be underlined, showing the effects of regularisation of annual thermal load curves generated by consumption for feeding the absorption chiller, that leads to a more effective choice of the prime mover. Traditional evaluations of CHP or CHCP plants are finalized to calculate thermodynamic efficiency, and not to examine the primary energy savings that is possible to obtain. However, lack of considerations on the methodology used for plant management can deeply influence the obtained results. It is furthermore recognised that a cogeneration or trigenerative plant must be managed in order to strictly follow thermal demand, since it is possible to sell to the public grid the excess electric energy. This study starts from the results on a energetic consumption research in the hotel sector, and in particular from the complete data on thermal and cooling consumption in several European hotels. The authors propose a general and innovative criterion on plant management and determine, on the base of the examined case-studies, some correlations which allow to size the main components of the plant, using only few data which are easy to obtain.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    215
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
215
Top 1%
Top 1%
Top 10%