
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A transformer-based synthetic-inflow generator for spatially developing turbulent boundary layers

This study proposes a newly developed deep-learning-based method to generate turbulent inflow conditions for spatially developing turbulent boundary layer (TBL) simulations. A combination of a transformer and a multiscale-enhanced super-resolution generative adversarial network is utilised to predict velocity fields of a spatially developing TBL at various planes normal to the streamwise direction. Datasets of direct numerical simulation (DNS) of flat plate flow spanning a momentum thickness-based Reynolds number, $Re_\theta = 661.5\unicode{x2013}1502.0$ , are used to train and test the model. The model shows a remarkable ability to predict the instantaneous velocity fields with detailed fluctuations and reproduce the turbulence statistics as well as spatial and temporal spectra with commendable accuracy as compared with the DNS results. The proposed model also exhibits a reasonable accuracy for predicting velocity fields at Reynolds numbers that are not used in the training process. With the aid of transfer learning, the computational cost of the proposed model is considered to be effectively low. Furthermore, applying the generated turbulent inflow conditions to an inflow–outflow simulation reveals a negligible development distance for the TBL to reach the target statistics. The results demonstrate for the first time that transformer-based models can be efficient in predicting the dynamics of turbulent flows. They also show that combining these models with generative adversarial networks-based models can be useful in tackling various turbulence-related problems, including the development of efficient synthetic-turbulent inflow generators.
- Pusan National University Korea (Republic of)
- Pusan National University Korea (Republic of)
- Kunsan National University Korea (Republic of)
- Royal Institute of Technology Sweden
- Kunsan National University Korea (Republic of)
Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Physics - Fluid Dynamics
Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Physics - Fluid Dynamics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
