Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Glaciolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Glaciology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Glaciology
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Glaciology
Article . 2024
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Surface energy balance closure over melting snow and ice from in situ measurements on the Greenland ice sheet

Authors: Maurice van Tiggelen; Paul C. J. P. Smeets; Carleen H. Reijmer; Dirk van As; Jason E. Box; Robert S. Fausto; Shfaqat Abbas Khan; +2 Authors

Surface energy balance closure over melting snow and ice from in situ measurements on the Greenland ice sheet

Abstract

Abstract Accurately quantifying all the components of the surface energy balance (SEB) is a prerequisite for the reliable estimation of surface melt and the surface mass balance over ice and snow. This study quantifies the SEB closure by comparing the energy available for surface melt, determined from continuous measurements of radiative fluxes and turbulent heat fluxes, to the surface ablation measured on the Greenland ice sheet between 2003 and 2023. We find that the measured daily energy available for surface melt exceeds the observed surface melt by on average 18 ± 30 W m−2 for snow and 12 ± 54 W m−2 for ice conditions (mean ± SD), which corresponds to 46 and 10% of the average energy available for surface melt, respectively. When the surface is not melting, the daily SEB is on average closed within 5 W m−2. Based on the inter-comparison of different ablation sensors and radiometers installed on different stations, and on the evaluation of modelled turbulent heat fluxes, we conclude that measurement uncertainties prevent a better daily to sub-daily SEB closure. These results highlight the need and challenges in obtaining accurate long-term in situ SEB observations for the proper evaluation of climate models and for the validation of remote sensing products.

Countries
Denmark, Netherlands
Related Organizations
Keywords

Environmental sciences, snow/ice surface processes, glaciological instruments and methods, Meteorology. Climatology, ice/atmosphere interactions, SDG 13 - Climate Action, /dk/atira/pure/sustainabledevelopmentgoals/climate_action; name=SDG 13 - Climate Action, melt - surface, GE1-350, QC851-999, energy balance, melt – surface

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Energy Research