Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photoinduced Electron-Transfer Quenching of Luminescent Silicon Nanocrystals as a Way To Estimate the Position of the Conduction and Valence Bands by Marcus Theory

Authors: Antonino Arrigo; Raffaello Mazzaro; Francesco Romano; Giacomo Bergamini; Paola Ceroni;

Photoinduced Electron-Transfer Quenching of Luminescent Silicon Nanocrystals as a Way To Estimate the Position of the Conduction and Valence Bands by Marcus Theory

Abstract

Photoluminescence of silicon nanocrystals (SiNCs) in the presence of a series of quinone electron acceptors and ferrocene electron donors is quenched by oxidative and reductive electron transfer dynamic processes, respectively. The rate of these processes is investigated as a function of (a) the thermodynamic driving force of the reaction, by changing the reduction potentials of the acceptor or donor molecules, (b) the dimension of SiNCs (diameter = 3.2 or 5.0 nm), (c) the surface capping layer on SiNCs (dodecyl or ethylbenzene groups), and (d) the solvent polarity (toluene vs dichloromethane). The results were interpreted within the classical Marcus theory, enabling us to estimate the position of the valence and conduction bands, as well as the reorganization energy (particularly small, as expected for quantum dots) and electronic transmission coefficients. The last parameter is in the range 10–5–10–6, demonstrating the nonadiabaticity of the process, and it decreases upon increasing the SiNC dimensions:...

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
Funded by
Related to Research communities
Energy Research