Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ KITopen (Karlsruhe I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy & Fuels
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy & Fuels
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.5445/ir/...
Article . 2022
License: CC BY NC ND
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Effect of Dichloromethane on Product Separation during Continuous Hydrothermal Liquefaction of Chlorella vulgaris and Aqueous Product Recycling for Algae Cultivation

Authors: Bingfeng Guo; Boda Yang; Peter Weil; Shicheng Zhang; Ursel Hornung; Nicolaus Dahmen;

The Effect of Dichloromethane on Product Separation during Continuous Hydrothermal Liquefaction of Chlorella vulgaris and Aqueous Product Recycling for Algae Cultivation

Abstract

Dichloromethane (DCM) is a solvent commonly used in laboratories for microalgae hydrothermal liquefaction (HTL) product separation. The addition of DCM would lead to an ���overestimation effect��� of biocrude yield and diminish biocrude quality. However, it is currently not clear to what extent this overestimation effect will impact a continuous HTL process. In this study, Chlorella vulgaris microalgae was processed in a continuous stirred tank reactor at different temperatures (300, 325, 350, 375, and 400 ��C) at 24 MPa for 15 min holding time. Two separation methods were applied to investigate the effect of using DCM in a cHTL product separation procedure in terms of product yield, biocrude elemental content, and aqueous product (AP) composition. Subsequently, the feasibility of reusing AP for algae cultivation has been evaluated. Results suggest that 350 ��C is the optimal temperature for cHTL operation, leading to the highest biocrude yield, and an average increase in biocrude yield of 9 wt % was achieved when using DCM in cHTL product separation. Within the temperature range investigated, an average biocrude yield estimation can be proposed by yield$_{non-DCM}$ ��� 0.818 �� yield$_{DCM}$. The AP has been characterized by total organic carbon and total nitrogen, high-performance liquid chromatography, and inductively coupled plasma optical emission spectroscopy. Results show that at 350���375 ��C more nitrogen and other ions were directed into the AP, which could be advantageous in nutrient recovery. With the help of optical density testing, algae was shown to exhibit a better growth using AP with activated carbon absorption purification treatment as compared to the standard medium. The recovery of water and nutrients from the HTL-AP could improve the economics of a microalgae biorefinery process.

Country
Germany
Related Organizations
Keywords

Technology, ddc:600, info:eu-repo/classification/ddc/600, 600

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
hybrid