
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy Intensity and Greenhouse Gas Emissions from Tight Oil Production in the Bakken Formation

Energy Intensity and Greenhouse Gas Emissions from Tight Oil Production in the Bakken Formation
The Bakken formation has contributed to the recent rapid increase in U.S. oil production, reaching a peak production of >1.2 × 106 barrels per day in early 2015. In this study, we estimate the energy intensity and greenhouse gas (GHG) emissions from 7271 Bakken wells drilled from 2006 to 2013. We model energy use and emissions using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) model, supplemented with an open-source drilling and fracturing model, GHGfrack. Overall well-to-refinery-gate (WTR) consumption of natural gas, diesel, and electricity represent 1.3%, 0.2%, and 0.005% of produced crude energy content, respectively. Fugitive emissions are modeled for a “typical” Bakken well using previously published results of atmospheric measurements. Flaring is a key driver of emissions: wells that flared in 2013 had a mean flaring rate that was ≈500 standard cubic feet per barrel or ≈14% of the energy content of the produced crude oil. Resulting production-weighted mean GHG emissions in 2013 wer...
- Argonne National Laboratory United States
- Harvard University United States
- Stanford University United States
- University of California, Davis United States
1 Research products, page 1 of 1
- 2014IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
