Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MediaTUMarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MediaTUM
Article . 2015
Data sources: MediaTUM
Energy & Fuels
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of Stoichiometry and Mixing on NOx Reduction in Waste-to-Energy Plants

Authors: Kristina Speth; Martin Murer; Robert von Raven; Hartmut Spliethoff;

Influence of Stoichiometry and Mixing on NOx Reduction in Waste-to-Energy Plants

Abstract

NOx emissions and their intermediate species NO, HCN, and NH3 have been investigated in an industrial waste-to-energy plant for the first time. Therefore, an innovative gas probe was designed accordingly to meet the challenging requirements of HCN and NH3 measurement. The N intermediates were measured in three different sample positions close to the grate. The highest concentrations were detected on the front side of the grate where the lowest local excess air ratio occurs. The NOx reduction potential, which is defined as the ratio of HCN and NH3 to NO, was above 1 during most of the relevant position sampling; hence, the selective high-temperature reduction does not seem to be a suitable technology for a further reduction of NOx emissions. The operating points investigated were conventional operation, flue gas recirculation (VLN-GM), air staging, and air staging with improved mixing. Conventional operation leads to emissions of about 450 mg/m3, which could be reduced to 200 mg/m3 by VLN-GM. Since the emissions are strongly dependent on the primary air ratio λ1, they show an almost linear correlation. The pretreatment of waste by shredding stabilizes the combustion and simplifies NOx control. The lowest emissions (around 100 mg/m3) were achieved during air-staged operation with additional air injection, due to improved mixing and the additional staging.

Keywords

ddc: ddc:

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green