Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Asphaltene Deposition during Bitumen Extraction with Natural Gas Condensate and Naphtha

Authors: ZhenBang Qi; Ali Abedini; Atena Sharbatian; Yuanjie Pang; Adriana Guerrero; David Sinton;

Asphaltene Deposition during Bitumen Extraction with Natural Gas Condensate and Naphtha

Abstract

Solvent bitumen extraction processes are alternatives to thermal processes with potential for improved economic and environmental performance. However, solvent interaction with bitumen commonly results in in situ asphaltene precipitation and deposition, which can hinder flow and reduce the process efficiency. Successful implementation requires one to select a solvent that improves recovery with minimal flow assurance problems. The majority of candidate industrial solvents are in the form of mixtures containing a wide range of hydrocarbon fractions, further complicating the selection process. In this study, we quantify the pore-scale asphaltene deposition using two commonly available solvent mixtures, natural gas condensate and naphtha, using a microfluidic platform. The results are also compared with those of two typical pure solvents, n-pentane and n-heptane, with all cases evaluated with both 50 and 100 μm pore-throat spacing. The condensate produced more asphaltenes and pore-space damage than the napht...

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%