
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Natural Gas Production from a Marine Clayey Hydrate Reservoir Formed in Seawater Using Depressurization at Constant Pressure, Depressurization by Constant Rate Gas Release, Thermal Stimulation, and Their Implications for Real Field Applications

The depressurization approach of methane production from a natural gas hydrate reservoir has been identified as the most energy-efficient production approach. However, some of the field-scale studies involving constant pressure depressurization (CPD) did not yield significant success. To address this, the constant rate gas release (CRD) depressurization approach was used to overcome the drawbacks of the CPD approach. The experimental investigations of these methods with and without thermal stimulation (TS) have not yet been investigated in detail for marine clayey hydrate reservoirs formed in seawater to understand their comparative effectiveness for methane gas recovery. Although common production approaches have been studied by many researchers on hydrate-bearing sand sediments, energy recovery from hydrate-rich clayey sediments has not yet been investigated in detail, which form the major dominant hydrate reservoirs of the hydrate resource pyramid across the globe. This work investigates in detail the ...
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
