Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science & Technology
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Developing a High-Resolution Emission Inventory of China’s Aviation Sector Using Real-World Flight Trajectory Data

Authors: Jingran Zhang; Shaojun Zhang; Xiaole Zhang; Jing Wang; Ye Wu; Jiming Hao;

Developing a High-Resolution Emission Inventory of China’s Aviation Sector Using Real-World Flight Trajectory Data

Abstract

Economic growth and globalization have led to a surge in civil aviation transportation demand. Among the major economies in the world, China has experienced a 12-fold increase in terms of total passenger aviation traffic volume since 2000 and is expected to be the largest aviation market soon. To better understand the environmental impacts of China's aviation sector, this study developed a real-world flight trajectory-based emission inventory, which enabled the fine-grained characterization of four-dimensional (time, longitude, latitude, and altitude) emissions of various flight stages. Our results indicated that fuel consumption and CO2 emissions showed two peaks in altitude distribution: below 1,000 m and between 8,000 and 12,000 m. Various pollutants depicted different vertical distributions; for example, nitrogen oxides (NOX) had a higher fraction during the high-altitude cruise stage due to the thermal NOX mechanism, while hydrocarbons had a dominant fraction at the low-altitude stages due to the incomplete combustion under low-load conditions. This improved aviation emission inventory approach identified that total emissions of CO2 and air pollutants from short-distance domestic flights would be significantly underestimated by the conventional great-circle-based approach due to underrepresented calculation parameters (particularly, flight distance, duration, and cruise altitude). Therefore, we suggest that more real-world aviation flight information, especially actual trajectory records, should be utilized to improve assessments of the environmental impacts of aviation.

Related Organizations
Keywords

Air Pollutants, Nitrogen Oxides, Economic Development, Carbon Dioxide, Aviation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
bronze