Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science & Technology
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Agricultural Methane Emissions in China: Inventories, Driving Forces and Mitigation Strategies

Authors: Yang Duan; Yueming Gao; Jing Zhao; Yinglan Xue; Wei Zhang; Wenjun Wu; Hongqiang Jiang; +1 Authors

Agricultural Methane Emissions in China: Inventories, Driving Forces and Mitigation Strategies

Abstract

Identification of the spatial distribution, driving forces, and future trends of agricultural methane (AGM) emissions is necessary to develop differentiated emission control pathways and achieve carbon neutrality by 2060 in China, which is the largest emitter of AGM. However, such research is currently lacking. Here, we estimated China's AGM emissions from 2010 to 2020 and then decomposed six factors that affect AGM emissions via the LMDI model. The results indicated that the AGM emissions in China in 2020 were 23.39 Tg, with enteric fermentation being the largest source, accounting for 43.9% of the total emissions. A total of 39.3% of the AGM emissions were from western China. The main driver of AGM emission reduction was emission intensity, accounting for 59% and 33.7% of methane emission reduction in the livestock sector and rice cultivation, respectively. Additionally, higher levels of urbanization contributed to AGM emission reductions, accounting for 31.3% and 43.0% of the livestock sector and rice cultivation emission reductions, respectively. Based on the SSP-RCP scenarios, we found that China's AGM emissions in 2060 were reduced by approximately 90% through a combination of technology measures, behavioral changes, and innovation policies. Our study provides a scientific basis for optimizing existing AGM emission reduction policies not only in China but also potentially in other high AGM-emitting countries, such as India and Brazil.

Related Organizations
Keywords

Technology, China, Livestock, Animals, Agriculture, Oryza, Methane, Carbon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Average
Top 10%
Top 1%
Related to Research communities
Netherlands Research Portal