
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Integrating Stock-Flow Modeling and Energy System Optimization to Explore Decarbonization Pathways for China’s Cement Industry

pmid: 40192170
In the global effort to mitigate climate change, the cement sector remains highly emission-intensive and hard-to-decarbonize. Previous research has highlighted material efficiency strategies─including more intensive use, lifetime extension, material-efficient design, and end-of-life processes, as demand-side options for reducing emissions. However, unintended effects and supply side responses, such as shifts in technological portfolios and investment trends, remain underexplored. This study develops a framework that couples detailed stock-flow modeling and a bottom-up energy system optimization model, a subcategory of integrated assessment models. Taking China's cement sector as a pilot case, our framework projects comprehensive decarbonization pathways for cement-based materials. The results show that material efficiency strategies could reduce cement demand by 57%, significantly decreasing reliance on supply side technologies required for net-zero emissions, with these strategies contributing nearly 50% of the cumulative decarbonization effort. The material efficiency strategies also reduce the incremental total production costs associated with low-carbon technologies in upstream sectors. When combined with CO2 uptake from cement-based materials, this study offers a cost-effective pathway for achieving net-zero emissions in the cement sector, lowering both costs and CO2 emissions without heavy dependence on carbon capture and storage.
China, Construction Materials, Climate Change, Models, Theoretical, Carbon Dioxide
China, Construction Materials, Climate Change, Models, Theoretical, Carbon Dioxide
