
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Challenges in Quantifying Greenhouse Gas Impacts of Waste-Based Biofuels in EU and US Biofuel Policies: Case Study of Butanol and Ethanol Production from Municipal Solid Waste

pmid: 31553580
Conversion of wastes to biofuels is a promising route to provide renewable low-carbon fuels, based on a low- or negative-cost feedstock, whose use can avoid negative environmental impacts of conventional waste treatment. However, current policies that employ LCA as a quantitative measure are not adequate for assessing this type of fuel, given their cross-sector interactions and multiple potential product/service streams (energy, fuels, materials, waste treatment service). We employ a case study of butanol and ethanol production from mixed municipal solid waste to demonstrate the challenges in using life cycle assessment to appropriately inform decision-makers. Greenhouse gas emissions results vary from -566 gCO2 eq/MJbiofuel (under US policies that employ system expansion approach) to +86 gCO2 eq/MJbiofuel and +23 gCO2 eq/MJbiofuel (under initial and current EU policies that employ energy-based allocation), relative to gasoline emissions of +94 gCO2 eq. LCA methods used in existing policies thus provide contradictory information to decision-makers regarding the potential for waste-based biofuels. A key factor differentiating life cycle assessment methodologies is the inclusion of avoided impacts of conventional waste treatment in US policies and their exclusion in EU policies. Present EU rules risk discouraging the valorisation of wastes to biofuels thus forcing waste toward lower-value treatment processes and products.
- Nottingham Trent University United Kingdom
Greenhouse Effect, Ethanol, Butanols, Solid Waste, Greenhouse Gases, Biofuels
Greenhouse Effect, Ethanol, Butanols, Solid Waste, Greenhouse Gases, Biofuels
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
