Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Equilibrium Modeling of Sorption-Enhanced Cogasification of Sewage Sludge and Wood for Hydrogen-Rich Gas Production with in Situ Carbon Dioxide Capture

Authors: Yujue Wang; Ming Zhao; Ming Zhao; Vineet Singh Sikarwar; Guozhao Ji;

Equilibrium Modeling of Sorption-Enhanced Cogasification of Sewage Sludge and Wood for Hydrogen-Rich Gas Production with in Situ Carbon Dioxide Capture

Abstract

Sewage sludge disposal is troublesome because of the presence of microbes, toxins, and heavy metals in it. Co-gasification of sewage sludge with wood is a promising pathway to dispose of sewage sludge and generate usable syngas, simultaneously. By using a sorbent for in situ sorption of CO2, H2 fraction in the generated syngas can be enhanced considerably. An equilibrium model was developed taking wood and sewage sludge as the model compounds and CaO as the sorbent. This evaluation was performed by employing ASPEN PLUS (V 8.8) software. Principle of Gibbs free-energy minimization was adopted to predict the outlet gas composition and gas yield. The impact of reactor temperature (600 to 900 °C) and sludge content (0 to 100 wt % at 700 °C) in the feedstock on syngas yield and constituents were assessed. With 30 wt % sludge, maximum gas yield was observed as 0.526 kg h–1 at 900 °C while minimum CO2 fraction was achieved at 700 °C. At 700 °C, the highest gas yield of 0.251 kg h–1 was recorded at 50 wt % sludge...

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%