Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Chemical & Engineering Data
Article . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of Isobutanol Addition on the Biodiesel Density

Authors: Abel G. M. Ferreira; Jaime Batista Santos; Johnny Baptista; Saman Khalighi; Rui M. M. Brito; Pedro F. Cruz;

Effect of Isobutanol Addition on the Biodiesel Density

Abstract

Higher alcohols such as butanol isomers have received remarkable attention as alternative fuels for compression ignition engines because of their great potential as blending components in mixtures with biodiesel and diesel resulting in significant reduction in greenhouse gases and harmful pollutants. In this context, the influence of temperature and pressure on the density of used cooking oil biodiesel, 1-butanol, isobutanol, and biodiesel mixtures with different levels of isobutanol (0.0500, 0.0941, and 0.1397 by mass) was assessed over the temperature range of 298–343 K and pressures up to 30 MPa. For this purpose, a vibrating tube densimeter was calibrated using water and n -octane. The average expanded uncertainty of measured density at a confidence level of 0.95 ( k = 2) was estimated to be 0.80 kg m –3 . The densities of all the systems were represented by the Tait equation of state with AARD % (0.01–0.035%) including the results for the new Tait equation for the biodiesel + isobutanol blends. When isobutanol is added to biodiesel to form a 14% by mass of alcohol, the density of mixture decreases 11 kg.m –3 . Thermal expansivity and isothermal compressibility increase with maximum deviations of 9.6 % and 7.8 % at 343 K and atmospheric pressure.

Related Organizations
Keywords

343 k, 80 kg, Chemical Sciences not elsewhere classified, 95 (<, Biophysics, new tait equation, Marine Biology, blending components, isothermal compressibility increase, compression ignition engines, average expanded uncertainty, 333, Inorganic Chemistry, tait equation, k </, Space Science, received remarkable attention, Environmental Sciences not elsewhere classified, >- octane, greenhouse gases, diesel resulting, harmful pollutants, alternative fuels, Ecology, n </, confidence level, calibrated using water, different levels, great potential, thermal expansivity, 035 %) including, 01 – 0, 30 mpa, maximum deviations, significant reduction, vibrating tube densimeter, Biological Sciences not elsewhere classified

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average