
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Physical Modeling of Photoelectrochemical Hydrogen Production Devices

Solar-powered water splitting with photoelectrochemical (PEC) devices is a promising method to simultaneously harvest and store solar energy at a large scale. Highly efficient small prototype PEC devices reported recently demonstrate a move from basic material research toward design and engineering of complete devices and systems. The increased interest in engineering calls for a better understanding about the operational details of PEC devices at different length scales. The relevant physical phenomena and the properties of typical materials are well-known for separate device components, but their interaction in a complete PEC cell has received less attention. Coupled physical models are useful for studying these interactions and understanding the device operation as a whole and for optimizing the devices. We review the central physical processes in solar-powered water splitting cells and the physical models used in their theoretical simulations. Our focus is in particular on how different physical proce...
- Aalto University Finland
photochemistry, ta214, ta114, ta221, solar energy, hydrogen, ta218
photochemistry, ta214, ta114, ta221, solar energy, hydrogen, ta218
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
