
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Isomeric Broadening of C60+ Electronic Excitation in Helium Droplets: Experiments Meet Theory

Helium is considered an almost ideal tagging atom for cold messenger spectroscopy experiments. Although helium is bound very weakly to the ionic molecule of interest, helium tags can lead to shifts and broadenings that we recorded near 963.5 nm in the electronic excitation spectrum of C60+ solvated with up to 100 helium atoms. Dedicated quantum calculations indicate that the inhomogeneous broadening is due to different binding energies of helium to the pentagonal and hexagonal faces of C60+, their dependence on the electronic state, and the numerous isomeric structures that become available for intermediate coverage. Similar isomeric effects can be expected for optical spectra of most larger molecules surrounded by nonabsorbing weakly bound solvent molecules, a situation encountered in many messenger-tagging spectroscopy experiments.
- Grenoble Alpes University France
- University of Innsbruck Austria
- Koç University Turkey
- FWF Austrian Science Fund Austria
- Koç University Turkey
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry, Cluster chemistry, 500, [CHIM]Chemical Sciences, Binding energy, Molecules, 530, Molecular structure, Helium
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry, Cluster chemistry, 500, [CHIM]Chemical Sciences, Binding energy, Molecules, 530, Molecular structure, Helium
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
