Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nano Letters
Article . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prototypical Study of Double-Layered Cathodes for Aqueous Rechargeable Static Zn–I2 Batteries

Authors: Yat Li; Samuel Chiovoloni; Shanwen Wang; Dun Lin; Dewei Rao; Dewei Rao; Jennifer Q. Lu;

Prototypical Study of Double-Layered Cathodes for Aqueous Rechargeable Static Zn–I2 Batteries

Abstract

Aqueous rechargeable zinc-iodine batteries (ZIBs) are promising candidates for grid energy storage because they are safe and low-cost and have high energy density. However, the shuttling of highly soluble triiodide ions severely limits the device's Coulombic efficiency. Herein, we demonstrate for the first time a double-layered cathode configuration with a conductive layer (CL) coupled with an adsorptive layer (AL) for ZIBs. This unique cathode structure enables the formation and reduction of adsorbed I3- ions at the CL/AL interface, successfully suppressing triiodide ion shuttling. A prototypical ZIB using a carbon cloth as the CL and a polypyrrole layer as the AL simultaneously achieves outstanding Coulombic efficiency (up to 95.6%) and voltage efficiency (up to 91.3%) in the aqueous ZnI2 electrolyte even at high-rate intermittent charging/discharging, without the need of ion selective membranes. These findings provide new insights to the design and fabrication of ZIBs and other batteries based on conversion reactions.

Related Organizations
Keywords

Chemical Sciences not elsewhere classified, Physiology, adsorptive layer, Coulombic efficiency, Prototypical Study, Biophysics, polypyrrole layer, double-layered cathode configuration, conversion reactions, Space Science, carbon cloth, ZnI 2 electrolyte, triiodide ions, cathode structure, triiodide ion, ZIB, AL, Infectious Diseases, Double-Layered Cathodes, batterie, CL, Medicine, grid energy storage, voltage efficiency, conductive layer, Physical Sciences not elsewhere classified, energy density, Aqueou, Biotechnology, Biological Sciences not elsewhere classified

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 1%
Top 10%
Top 1%
Related to Research communities
Energy Research