
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In Situ TEM Analysis of Organic–Inorganic Metal-Halide Perovskite Solar Cells under Electrical Bias

pmid: 27775887
Changes in the nanostructure of methylammonium lead iodide (MAPbI3) perovskite solar cells are assessed as a function of current-voltage stimulus by biasing thin samples in situ in a transmission electron microscope. Various degradation pathways are identified both in situ and ex situ, predominantly at the positively biased MAPbI3 interface. Iodide migrates into the positively biased charge transport layer and also volatilizes along with organic species, which triggers the nucleation of PbI2 nanoparticles and voids and hence decreases the cell performance.
- University of Basel Switzerland
- Ernst Ruska Centre Germany
- Forschungszentrum Jülich Germany
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
- Helmholtz Association of German Research Centres Germany
Characterization, microstructure, perovskite solar cell, photovoltaics, in situ transmission electron microscopy, degradation
Characterization, microstructure, perovskite solar cell, photovoltaics, in situ transmission electron microscopy, degradation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).124 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
