
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recovery Mechanisms in Aged Kesterite Solar Cells

For successful long-term deployment and operation of kesterites Cu2ZnSn(S x Se1-x )4 (CZTSSe) as light-absorber materials for photovoltaics, device stability and recovery in kesterite solar cells are investigated. A low-temperature heat treatment is applied to overcome the poor charge extraction that developed in the natural aging process. It is suggested that defect states at aged CZTSSe/CdS heterojunctions were reduced, while apparent doping density in the CZTSSe absorber increased due to Cd/Zn interdiffusion at the heterojunction during the annealing process. In situ annealing experiments in a transmission electron microscope were used to investigate the elemental diffusion at the CZTSSe/CdS heterojunction. This study reveals the critical role of heat treatment to enhance the absorber/Mo back contact, improve the quality of the absorber/buffer heterojunction, and recover the device performance in aged kesterite thin-film solar cells.
- Northumbria University United Kingdom
- Northumbria University United Kingdom
- Nanyang Technological University Singapore
:Materials [Engineering], F200, 621, H800, Engineering::Materials, Photovoltaics, Kesterite
:Materials [Engineering], F200, 621, H800, Engineering::Materials, Photovoltaics, Kesterite
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
