Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Applied Energy M...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Applied Energy Materials
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
https://dx.doi.org/10.60692/4v...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/f6...
Other literature type . 2023
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dual Interfacial Tin-Oxide Layer with Chloride Salt for High-Performance and Durable Perovskite Solar Cells

طبقة مزدوجة من أكسيد القصدير مع ملح الكلوريد لخلايا بيروفسكايت الشمسية عالية الأداء والمتينة
Authors: Sasiphapa Rodbuntum; Nuttaya Sukgorn; Narong Chanlek; Hideki Nakajima; Nopporn Rujisamphan; Pipat Ruankham; Duangmanee Wongratanaphisan; +2 Authors

Dual Interfacial Tin-Oxide Layer with Chloride Salt for High-Performance and Durable Perovskite Solar Cells

Abstract

Une couche de SnO2 sur mesure utilisant des couches de transport d'électrons doubles (ETL) a été conçue pour surmonter les barrières énergétiques interfaciales, améliorer le transport de charge et diminuer la recombinaison de charge aux interfaces pérovskite/ETL. Grâce à cette double approche d'ingénierie interfaciale, des couches compactes de SnO2 avec un alignement idéal du niveau d'énergie interfaciale ont été préparées à l'aide de sels de SnCl2 et de NH4Cl, conduisant à une extraction de charge efficace. Des cellules solaires stables en pérovskite avec un rendement de conversion d'énergie de 21,46 %, une tension élevée en circuit ouvert de 1,10 V et un facteur de remplissage de 0,79 ont été obtenues avec succès grâce à cette approche. Les dispositifs présentaient également une hystérésis négligeable et aucune perte d'efficacité significative après un test de stabilité de 2400 h dans des conditions ambiantes sans encapsulation. Ces résultats démontrent une approche efficace pour obtenir des couches ETL de haute qualité pour des cellules solaires efficaces et stables.

Se diseñó una capa de SnO2 personalizada que utiliza capas de transporte de electrones dobles (ETL) para superar las barreras de energía interfaciales, mejorar el transporte de cargas y disminuir la recombinación de cargas en las interfaces perovskita/ETL. A través de este enfoque de ingeniería interfacial dual, se prepararon capas compactas de SnO2 con una alineación ideal del nivel de energía interfacial utilizando sales de SnCl2 y NH4Cl, lo que condujo a una extracción de carga eficiente. Las células solares de perovskita estables con una eficiencia de conversión de energía del 21.46%, un alto voltaje de circuito abierto de 1.10 V y un factor de llenado de 0.79 se lograron con éxito utilizando este enfoque. Los dispositivos también exhibieron una histéresis insignificante y ninguna pérdida significativa de eficiencia después de una prueba de estabilidad de 2400 h en condiciones ambientales sin encapsulación. Estos resultados demuestran un enfoque eficiente para lograr capas ETL de alta calidad para células solares eficientes y estables.

A tailored SnO2 layer using double electron transport layers (ETLs) was designed to overcome interfacial energy barriers, enhance charge transport, and decrease charge recombination at the perovskite/ETL interfaces. Through this dual interfacial engineering approach, compact SnO2 layers with an ideal interfacial energy-level alignment were prepared using SnCl2 and NH4Cl salts, leading to efficient charge extraction. Stable perovskite solar cells with a power conversion efficiency of 21.46%, a high open-circuit voltage of 1.10 V, and a fill factor of 0.79 were successfully achieved using this approach. The devices also exhibited negligible hysteresis and no significant efficiency loss after a 2400 h stability test at ambient conditions without encapsulation. These results demonstrate an efficient approach to achieving high-quality ETL layers for efficient and stable solar cells.

تم تصميم طبقة SnO2 المصممة خصيصًا باستخدام طبقات نقل الإلكترون المزدوجة (ETLs) للتغلب على حواجز الطاقة البينية، وتعزيز نقل الشحنة، وتقليل إعادة تركيب الشحنة في واجهات البيروفسكايت/ETL. من خلال هذا النهج الهندسي البيني المزدوج، تم إعداد طبقات SnO2 المدمجة مع محاذاة مثالية لمستوى الطاقة البينية باستخدام أملاح SnCl2 و NH4Cl، مما أدى إلى استخراج شحن فعال. تم تحقيق خلايا بيروفسكايت الشمسية المستقرة بكفاءة تحويل طاقة تبلغ 21.46 ٪، وجهد دائرة مفتوحة عالية يبلغ 1.10 فولت، وعامل تعبئة يبلغ 0.79 بنجاح باستخدام هذا النهج. أظهرت الأجهزة أيضًا تباطؤًا طفيفًا وعدم وجود خسارة كبيرة في الكفاءة بعد اختبار الثبات لمدة 2400 ساعة في الظروف المحيطة دون تغليف. تُظهر هذه النتائج نهجًا فعالًا لتحقيق طبقات ETL عالية الجودة للخلايا الشمسية الفعالة والمستقرة.

Keywords

Thin-Film Solar Cells, Perovskite Solar Cell Technology, Quantum mechanics, Layer (electronics), Engineering, Chemical engineering, FOS: Electrical engineering, electronic engineering, information engineering, Doping, Nanotechnology, Electrical and Electronic Engineering, Optoelectronics, Perovskite (structure), Photovoltaic system, FOS: Chemical engineering, FOS: Nanotechnology, Hysteresis, Physics, Oxide, Voltage, Materials science, Open-circuit voltage, Thin-Film Solar Cell Technology, Tin oxide, Solar Cell Efficiency, Tin, Electrical engineering, Physical Sciences, Metallurgy, Energy conversion efficiency, Perovskite Solar Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
hybrid
Related to Research communities
Energy Research