
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of One Specific Carbon–Carbon Bond on the Quality, Stability, and Photovoltaic Performance of Hybrid Organic–Inorganic Bismuth Iodide Materials

Hybrid organic–inorganic halide perovskites are promising materials for thin-film solar cells. However, the toxicity and instability of best-in-class lead–halide perovskite materials make them nonideal. To combat these issues, we replaced lead with bismuth and explored the sensitivity of these new lead-free materials to the valency and bonding of their cationic organic groups. Specifically, we synthesized and characterized the materials properties and photophysical properties of hexane-1,6-diammonium bismuth pentaiodide ((HDA2+)BiI5) and compared them to an analogue containing a more volatile organic group with half the number of carbon and nitrogen atoms in the form of n-propylammonium ((PA+)xBiI3+x, where 1 < x < 3). The full crystallographic structures of (HDA2+)BiI5 and (PA+)xBiI3+x were resolved by single-crystal X-ray diffraction. (HDA2+)BiI5 was shown to be pure-phase and have a one-dimensional structure, whereas (PA+)xBiI3+x was shown to be a mix of one-dimensional and zero-dimensional phases. Str...
- Department of Chemistry University of California, Irvine United States
- Middlesex University United Kingdom
- University of California, Irvine United States
- University College London - Department of Medicine
- National Renewable Energy Laboratory United States
nontoxic, bismuth halide, solar fuels, stability, 540, photovoltaic, hybrid organic−inorganic, solar cells, dications
nontoxic, bismuth halide, solar fuels, stability, 540, photovoltaic, hybrid organic−inorganic, solar cells, dications
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
