Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Applied Material...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Applied Materials & Interfaces
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Continuous Dual-Scale Interpenetrating Network Carbon Foam–Stearic Acid Composite as a Shape-Stabilized Phase Change Material with a Desirable Synergistic Effect

Authors: Renquan Wu; Weixiong Mei; Yunhong Zhou; Tiantian Bi; Qilang Lin;

Continuous Dual-Scale Interpenetrating Network Carbon Foam–Stearic Acid Composite as a Shape-Stabilized Phase Change Material with a Desirable Synergistic Effect

Abstract

For enhancing the heat storage and encapsulation performances of organic phase change materials (PCMs), a carbon foam (CF) with a continuous dual-scale pore structure (DCF) was developed. Employing the as-prepared DCF as a stearic acid (SA) support, a novel shape-stabilized SA-CF composite PCM with a continuous dual-scale interpenetrating network structure was achieved through the impregnation of SA into the DCF. DCF-900, prepared at an activation temperature of 900 °C, possesses a high loading capacity of 89.54 wt % for melted SA without leakage. The resulting SA/DCF-900 composite with a continuous dual-scale interpenetrating network structure exhibits excellent comprehensive performances with a good synergistic effect. The composite presents a thermal conductivity of 1.298 W/m·K and an encouraging compressive strength of 9.03 MPa, which increase by 2.25-fold and 3.56-fold compared with those of DCF-900, respectively. Furthermore, its melting and freezing enthalpies reach 192.8 and 192.7 J/g with a storage efficiency of about 100%, respectively; meanwhile, it displays excellent thermal cycle stability and reversibility after 600 thermal cycles with a high melting/freezing enthalpy retention rate of up to 96%. More importantly, its light-to-thermal conversion efficiency reaches 91.8% under a light intensity of 100 mW/cm2. Consequently, the SA/DCF-900 composite is a promising candidate for high-performance PCMs.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback