Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Catalysisarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Catalysis
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2022
License: rioxx All Rights Reserved
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2022
License: CC BY
Data sources: Apollo
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2022
Data sources: Apollo
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Reviews
Article . 2022 . Peer-reviewed
ACS Catalysis
Article . 2022 . Peer-reviewed
versions View all 18 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bio-Electrocatalytic Conversion of Food Waste to Ethylene via Succinic Acid as the Central Intermediate

Authors: Pichler, Christian M.; Bhattacharjee, Subhajit; Lam, Erwin; Su, Lin; Collauto, Alberto; Roessler, Maxie M.; Cobb, Samuel J.; +3 Authors

Bio-Electrocatalytic Conversion of Food Waste to Ethylene via Succinic Acid as the Central Intermediate

Abstract

Ethylene is an important feedstock in the chemical industry, but currently requires production from fossil resources. The electrocatalytic oxidative decarboxylation of succinic acid offers in principle an environmentally friendly route to generate ethylene. Here, a detailed investigation of the role of different carbon electrode materials and characteristics revealed that a flat electrode surface and high ordering of the carbon material are conducive for the reaction. A range of electrochemical and spectroscopic approaches such as Koutecky-Levich analysis, rotating ring-disk electrode (RRDE) studies, and Tafel analysis as well as quantum chemical calculations, electron paramagnetic resonance (EPR), and in situ infrared (IR) spectroscopy generated further insights into the mechanism of the overall process. A distinct reaction intermediate was detected, and the decarboxylation onset potential was determined to be 2.2-2.3 V versus the reversible hydrogen electrode (RHE). Following the mechanistic studies and electrode optimization, a two-step bio-electrochemical process was established for ethylene production using succinic acid sourced from food waste. The initial step of this integrated process involves microbial hydrolysis/fermentation of food waste into aqueous solutions containing succinic acid (0.3 M; 3.75 mmol per g bakery waste). The second step is the electro-oxidation of the obtained intermediate succinic acid to ethylene using a flow setup at room temperature, with a productivity of 0.4-1 μmol ethylene cmelectrode -2 h-1. This approach provides an alternative strategy to produce ethylene from food waste under ambient conditions using renewable energy.

Countries
Austria, United Kingdom
Keywords

0904 Chemical Engineering, 0305 Organic Chemistry, bio-electrochemistry, BIOMASS, ENERGY, sustainable resources, IRRADIATED SINGLE-CRYSTALS, RADICALS, Physical, 0302 Inorganic Chemistry, waste conversion, ESR, Science & Technology, Chemistry, Physical, circular economy, decarboxylation reaction, 540, ethylene production, Chemistry, GAS, Physical Sciences, KEYWORDS, ELECTRON-SPIN-RESONANCE, DIOXIDE

Powered by OpenAIRE graph
Found an issue? Give us feedback