Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Materials Letters
Article . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
Digital.CSIC
Article . 2021 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large-Scale Soft-Lithographic Patterning of Plasmonic Nanoparticles

Authors: Naihao Chiang; Leonardo Scarabelli; Gail A. Vinnacombe-Willson; Luis A. Pérez; Camilla Dore; Agustín Mihi; Steven J. Jonas; +1 Authors

Large-Scale Soft-Lithographic Patterning of Plasmonic Nanoparticles

Abstract

Micro- and nanoscale patterned monolayers of plasmonic nanoparticles were fabricated by combining concepts from colloidal chemistry, self-assembly, and subtractive soft lithography. Leveraging chemical interactions between the capping ligands of pre-synthesized gold colloids and a polydimethylsiloxane stamp, we demonstrated patterning gold nanoparticles over centimeter-scale areas with a variety of micro- and nanoscale geometries, including islands, lines, and chiral structures (e.g., square spirals). By successfully achieving nanoscale manipulation over a wide range of substrates and patterns, we establish a powerful and straightforward strategy, nanoparticle chemical lift-off lithography (NP-CLL), for the economical and scalable fabrication of functional plasmonic materials with colloidal nanoparticles as building blocks, offering a transformative solution for designing next-generation plasmonic technologies.

Countries
United States, Spain
Keywords

Chemical Sciences not elsewhere classified, Bioengineering, plasmonic materials, pre-synthesized gold colloids, nanoparticle chemical lift-off lith., Inorganic Chemistry, building blocks, Leveraging chemical interactions, Engineering, Space Science, patterning gold nanoparticles, Nanotechnology, scalable fabrication, Large-Scale Soft-Lithographic Patte., Pharmacology, chiral structures, Materials engineering, square spirals, nanoscale manipulation, next-generation plasmonic technologies, 620, NP-CLL, plasmonic nanoparticles, centimeter-scale areas, nanoscale geometries, transformative solution, Plasmonic Nanoparticles Micro, polydimethylsiloxane stamp, Physical Sciences not elsewhere classified, Biotechnology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 19
    download downloads 56
  • 19
    views
    56
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC1956
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
14
Top 10%
Average
Top 10%
19
56
Green
hybrid
Related to Research communities
Energy Research