Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of East A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Nano
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/f1...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/es...
Other literature type . 2024
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interfacial “Double-Terminal Binding Sites” Catalysts Synergistically Boosting the Electrocatalytic Li2S Redox for Durable Lithium–Sulfur Batteries

تعمل "مواقع الربط ثنائية الطرف" البينية على تحفيز المحفزات بشكل تآزري لتعزيز الأكسدة الكهرومغناطيسية Li2S لبطاريات الليثيوم والكبريت المعمرة
Authors: Huifang Xu; Qingbin Jiang; K.S. Hui; S Wang; Le Liu; Tianyu Chen; Yunshan Zheng; +5 Authors

Interfacial “Double-Terminal Binding Sites” Catalysts Synergistically Boosting the Electrocatalytic Li2S Redox for Durable Lithium–Sulfur Batteries

Abstract

La conversion catalytique des polysulfures apparaît comme une approche prometteuse pour améliorer la cinétique et atténuer le transfert des polysulfures dans les batteries lithium-soufre (Li–S), en particulier dans des conditions de charge élevée en soufre et d'électrolyte pauvre. Nous présentons ici une architecture de séparateur qui incorpore des sites de liaison à deux bornes (DTB) dans un cadre de carbone dopé à l'azote, composé de grappes polaires Co0.85Se et Co (Co/Co0.85Se @NC), pour améliorer la durabilité des batteries Li-S. Les amas uniformément dispersés de Co0.85Se et Co polaires offrent des sites actifs abondants pour les polysulfures de lithium (LiPS), permettant une conversion LiPS efficace tout en servant d'ancres grâce à une combinaison d'interactions chimiques. Les calculs de la théorie fonctionnelle de la densité, ainsi que les caractérisations Raman et de diffraction des rayons X in situ, révèlent que l'effet DTB renforce l'énergie de liaison aux polysulfures et abaisse les barrières énergétiques des réactions d'oxydo-réduction des polysulfures. Les batteries Li–S utilisant le séparateur modifié Co/Co0,85Se @ NC présentent une stabilité de cycle exceptionnelle (0,042 % par cycle sur 1000 cycles à 2 °C) et une capacité de débit (849 mAh g–1 à 3 °C), ainsi qu'une capacité surfacique impressionnante de 10,0 mAh cm–2, même dans des conditions difficiles avec une charge élevée en soufre (10,7 mg cm–2) et des environnements d'électrolyte maigre (5,8 μL mg–1). La stratégie du site DTB offre des informations précieuses sur le développement de batteries Li–S haute performance.

La conversión catalítica de polisulfuros surge como un enfoque prometedor para mejorar la cinética y mitigar el transporte de polisulfuros en baterías de litio-azufre (Li–S), especialmente en condiciones de alta carga de azufre y electrolito pobre. En este documento, presentamos una arquitectura de separador que incorpora sitios de unión de doble terminal (DTB) dentro de un marco de carbono dopado con nitrógeno, que consiste en grupos polares de Co0.85Se y Co (Co/Co0.85Se @NC), para mejorar la durabilidad de las baterías de Li-S. Los grupos uniformemente dispersos de Co0.85Se y Co polares ofrecen abundantes sitios activos para los polisulfuros de litio (LiPS), lo que permite una conversión eficiente de LiPS a la vez que sirven como anclajes a través de una combinación de interacciones químicas. Los cálculos de la teoría funcional de la densidad, junto con las caracterizaciones in situ de Raman y difracción de rayos X, revelan que el efecto DTB fortalece la energía de unión a los polisulfuros y reduce las barreras energéticas de las reacciones redox de polisulfuro. Las baterías de Li–S que utilizan el separador modificado con Co/Co0.85Se @ NC demuestran una estabilidad cíclica excepcional (0.042% por ciclo durante 1000 ciclos a 2 C) y una capacidad de velocidad (849 mAh g–1 a 3 C), además de ofrecer una impresionante capacidad de área de 10.0 mAh cm–2 incluso en condiciones difíciles con una alta carga de azufre (10.7 mg cm–2) y entornos de electrolitos pobres (5.8 μL mg–1). La estrategia del sitio de DTB ofrece información valiosa sobre el desarrollo de baterías Li–S de alto rendimiento.

Catalytic conversion of polysulfides emerges as a promising approach to improve the kinetics and mitigate polysulfide shuttling in lithium–sulfur (Li–S) batteries, especially under conditions of high sulfur loading and lean electrolyte. Herein, we present a separator architecture that incorporates double-terminal binding (DTB) sites within a nitrogen-doped carbon framework, consisting of polar Co0.85Se and Co clusters (Co/Co0.85Se@NC), to enhance the durability of Li–S batteries. The uniformly dispersed clusters of polar Co0.85Se and Co offer abundant active sites for lithium polysulfides (LiPSs), enabling efficient LiPS conversion while also serving as anchors through a combination of chemical interactions. Density functional theory calculations, along with in situ Raman and X-ray diffraction characterizations, reveal that the DTB effect strengthens the binding energy to polysulfides and lowers the energy barriers of polysulfide redox reactions. Li–S batteries utilizing the Co/Co0.85Se@NC-modified separator demonstrate exceptional cycling stability (0.042% per cycle over 1000 cycles at 2 C) and rate capability (849 mAh g–1 at 3 C), as well as deliver an impressive areal capacity of 10.0 mAh cm–2 even in challenging conditions with a high sulfur loading (10.7 mg cm–2) and lean electrolyte environments (5.8 μL mg–1). The DTB site strategy offers valuable insights into the development of high-performance Li–S batteries.

يظهر التحويل الحفاز لعديد الكبريتيد كنهج واعد لتحسين الحركية وتخفيف انتقال عديد الكبريتيد في بطاريات الليثيوم والكبريت (Li - S)، خاصة في ظل ظروف التحميل العالي للكبريت والإلكتروليت الضعيف. هنا، نقدم بنية فاصل تتضمن مواقع ربط مزدوجة الطرف (DTB) ضمن إطار كربوني مخدر بالنيتروجين، يتكون من مجموعات Co0.85Se و Co القطبية (Co/Co0.85Se@NC)، لتعزيز متانة بطاريات Li - S. توفر المجموعات المنتشرة بشكل موحد من Co0.85Se القطبي و Co مواقع نشطة وفيرة لبولي كبريتيد الليثيوم (LiPSs)، مما يتيح تحويل LiPS بكفاءة مع العمل أيضًا كمثبتات من خلال مزيج من التفاعلات الكيميائية. تكشف حسابات نظرية الكثافة الوظيفية، جنبًا إلى جنب مع خصائص رامان في الموقع وخصائص حيود الأشعة السينية، أن تأثير DTB يقوي طاقة الارتباط بالعديد من الكبريتيدات ويقلل من حواجز الطاقة لتفاعلات الأكسدة المتعددة الكبريتيدات. تُظهر بطاريات Li - S التي تستخدم فاصل Co/Co0.85Se @ NC المعدل استقرارًا استثنائيًا في الدورة (0.042 ٪ لكل دورة أكثر من 1000 دورة عند درجتين مئويتين) وقدرة على المعدل (849 مللي أمبير في الساعة ز-1 عند 3 درجات مئوية)، بالإضافة إلى توفير قدرة مساحية مثيرة للإعجاب تبلغ 10.0 مللي أمبير في الساعة سم-2 حتى في الظروف الصعبة ذات التحميل العالي للكبريت (10.7 مجم سم-2) وبيئات الإلكتروليت الخالية من الدهون (5.8 ميكرولتر مجم-1). تقدم استراتيجية موقع DTB رؤى قيمة حول تطوير بطاريات Li - S عالية الأداء.

Country
United Kingdom
Keywords

Electrolyte Design, Computational chemistry, Redox Flow Batteries, Electrode, Nuclear physics, Organic chemistry, Binding energy, Lithium (medication), Catalysis, Redox, Engineering, Chemical engineering, Endocrinology, Electrolyte, FOS: Electrical engineering, electronic engineering, information engineering, Nanotechnology, Electrical and Electronic Engineering, Lithium Battery Technologies, FOS: Chemical engineering, Aqueous Zinc-Ion Battery Technology, FOS: Nanotechnology, Physics, 540, Materials science, 620, Polysulfide, Chemistry, Separator (oil production), Physical chemistry, Lithium-ion Battery Technology, Physical Sciences, Metallurgy, Density functional theory, Medicine, Thermodynamics, Lithium-Sulfur Batteries, Sulfur, Inorganic chemistry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
Green
hybrid
Related to Research communities
Energy Research