Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Nanoarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Nano
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2025
Data sources: Apollo
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vibronically Coherent Exciton Trapping in Monolayer WS2

Authors: Yorrick Boeije; Anh Tuan Hoang; Juhwan Lim; Samuel D. Stranks; Manish Chhowalla; Eric Pop; Andrew J. Mannix; +1 Authors

Vibronically Coherent Exciton Trapping in Monolayer WS2

Abstract

Defect engineering in transition metal dichalcogenide (TMD) monolayers enables applications in single-photon emission, sensing, and photocatalysis. These functionalities critically depend on defect type, density, spatial distribution, relative energy, and the dynamics of exciton trapping at the defect sites. The latter are mediated by coupling to optical phonons through mechanisms not yet fully understood. Traditionally, exciton or carrier trapping at defects in inorganic crystals has been described by incoherent multiphonon emission within the Born–Oppenheimer approximationan approach that underpins the widely used Shockley–Read–Hall framework for nonradiative recombination. Here, we use impulsive vibrational spectroscopy to investigate exciton trapping in defect-modified monolayers of WS(2) grown through metal–organic chemical vapor deposition. We find that the phonon coherences of the Raman-active A’ and E’ modes persist throughout the ultrafast (∼100 fs) exciton trapping process, indicating a continuous evolution of the excitonic wave function. This observation is consistent with a conical intersection-mediated trapping process, in which a potential energy surface crossing between the free and trapped excitonic states acts as a funnel to drive this nonadiabatic transition. Such a molecular-like, vibronically coherent mechanism lies beyond the Born–Oppenheimer approximation, in stark contrast to classical, incoherent trapping models in solids. Moreover, the faster dephasing of the E’ mode in the trapped exciton state compared to the free exciton suggests it acts as a vibrational coordinate that promotes the trapping process. These findings provide mechanistic insights into exciton–phonon interactions at defects in TMD monolayers and inform strategies for engineering quantum and energy functionalities.

Keywords

defect engineering, transition metal dichalcogenide defects, conical intersections, exciton trapping, defect photophysics, vibronic coherence, Article, exciton−phonon coupling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid