Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Sustainable Chem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Sustainable Chemistry & Engineering
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/24...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/av...
Other literature type . 2022
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Facile Synthesis and Life Cycle Assessment of Highly Active Magnetic Sorbent Composite Derived from Mixed Plastic and Biomass Waste for Water Remediation

تخليق الوجه وتقييم دورة الحياة لمركب ماص مغناطيسي نشط للغاية مشتق من نفايات البلاستيك والكتلة الحيوية المختلطة لمعالجة المياه
Authors: Ahmed I. Osman; Ahmed M. Elgarahy; Neha Mehta; Ala'a H. Al‐Muhtaseb; Ahmed S. Al‐Fatesh; David Rooney;

Facile Synthesis and Life Cycle Assessment of Highly Active Magnetic Sorbent Composite Derived from Mixed Plastic and Biomass Waste for Water Remediation

Abstract

Les déchets de plastique et de biomasse posent un risque grave pour l'environnement ; ainsi, ici, nous avons mélangé des déchets de biomasse avec des déchets de bouteilles en plastique (PET) pour produire des matériaux composites de charbon pour produire un composite de charbon magnétique pour une meilleure séparation lorsqu'il est utilisé dans des applications de traitement de l'eau. Cette étude a également calculé les impacts environnementaux du cycle de vie de la préparation du matériau adsorbant pour 11 catégories d'indicateurs différentes. Pour 1 unité fonctionnelle (1 kg de feuilles de marc comme matière première), l'épuisement abiotique des combustibles fossiles et le potentiel de réchauffement climatique ont été quantifiés à 7,17 MJ et 0,63 kg d'équivalent CO2 pour la production de matériaux composites à base de charbon magnétique. Le matériau composite de carbonisation magnétique (MPBC) a ensuite été utilisé pour éliminer le colorant violet cristallin de sa solution aqueuse selon divers paramètres opérationnels. Les théories statistiques de la cinétique et de l'isotherme ont montré que la sorption du colorant CV sur le MPBC était régie par des modèles de pseudo-seconde-ordre et de Langmuir, respectivement. L'évaluation quantitative de la capacité de sorption clarifie que le MPBC produit présentait une capacité admirable de 256,41 mg g-1. Pendant ce temps, la recyclabilité de 92,4 % de MPBC a été démontrée après 5 cycles d'adsorption/désorption. Les résultats de cette étude inspireront une production plus durable et plus rentable de sorbants magnétiques, y compris ceux dérivés de flux de déchets de plastique et de biomasse combinés.

Los residuos plásticos y de biomasa representan un grave riesgo ambiental; por lo tanto, en este documento, mezclamos residuos de biomasa con residuos de botellas de plástico (PET) para producir materiales compuestos de carbón para producir un compuesto de carbón magnético para una mejor separación cuando se usa en aplicaciones de tratamiento de agua. Este estudio también calculó los impactos ambientales del ciclo de vida de la preparación de material adsorbente para 11 categorías de indicadores diferentes. Para 1 unidad funcional (1 kg de hojas de orujo como materia prima), el agotamiento abiótico de los combustibles fósiles y el potencial de calentamiento global se cuantificaron como 7,17 MJ y 0,63 kg de CO2 equivalente para la producción de materiales compuestos de carbón magnético. El material compuesto de carbón magnético (MPBC) se utilizó luego para eliminar el colorante violeta cristal de su solución acuosa bajo varios parámetros operativos. Las teorías estadísticas de cinética e isoterma mostraron que la sorción del colorante CV en MPBC estaba gobernada por modelos de pseudo-segundo orden y Langmuir, respectivamente. La evaluación cuantitativa de la capacidad de sorción aclara que el MPBC producido exhibió una capacidad admirable de 256.41 mg g-1. Mientras tanto, la reciclabilidad del 92.4% de MPBC se demostró después de 5 ciclos de adsorción/desorción. Los resultados de este estudio inspirarán una producción más sostenible y rentable de sorbentes magnéticos, incluidos los derivados de flujos combinados de residuos plásticos y de biomasa.

Plastic and biomass waste pose a serious environmental risk; thus, herein, we mixed biomass waste with plastic bottle waste (PET) to produce char composite materials for producing a magnetic char composite for better separation when used in water treatment applications. This study also calculated the life cycle environmental impacts of the preparation of adsorbent material for 11 different indicator categories. For 1 functional unit (1 kg of pomace leaves as feedstock), abiotic depletion of fossil fuels and global warming potential were quantified as 7.17 MJ and 0.63 kg CO2 equiv for production of magnetic char composite materials. The magnetic char composite material (MPBC) was then used to remove crystal violet dye from its aqueous solution under various operational parameters. The kinetics and isotherm statistical theories showed that the sorption of CV dye onto MPBC was governed by pseudo-second-order, and Langmuir models, respectively. The quantitative assessment of sorption capacity clarifies that the produced MPBC exhibited an admirable ability of 256.41 mg g-1. Meanwhile, the recyclability of 92.4% of MPBC was demonstrated after 5 adsorption/desorption cycles. Findings from this study will inspire more sustainable and cost-effective production of magnetic sorbents, including those derived from combined plastic and biomass waste streams.

تشكل نفايات البلاستيك والكتلة الحيوية خطرًا بيئيًا خطيرًا ؛ وبالتالي، هنا، قمنا بخلط نفايات الكتلة الحيوية مع نفايات الزجاجات البلاستيكية (PET) لإنتاج مواد مركبة من الفحم لإنتاج مركب فحم مغناطيسي لفصل أفضل عند استخدامه في تطبيقات معالجة المياه. كما حسبت هذه الدراسة التأثيرات البيئية لدورة الحياة لإعداد المواد الممتزة لـ 11 فئة مختلفة من المؤشرات. بالنسبة لوحدة وظيفية واحدة (1 كجم من أوراق الثفل كمادة وسيطة)، تم تحديد النضوب اللاأحيائي للوقود الأحفوري وإمكانات الاحترار العالمي على أنها 7.17 ميجا جول و 0.63 كجم من مكافئ ثاني أكسيد الكربون لإنتاج المواد المركبة للفحم المغناطيسي. ثم تم استخدام المادة المركبة للفحم المغناطيسي (MPBC) لإزالة الصبغة البنفسجية البلورية من محلولها المائي تحت معايير تشغيلية مختلفة. أظهرت النظريات الإحصائية للحركية والحرارة المتساوية أن امتصاص صبغة CV على MPBC كان محكومًا بنماذج زائفة من الدرجة الثانية، ونماذج Langmuir، على التوالي. يوضح التقييم الكمي لقدرة الامتصاص أن خلايا الدم البيضاء المنتجة أظهرت قدرة مثيرة للإعجاب تبلغ 256.41 ملغ غرام -1. وفي الوقت نفسه، تم إثبات قابلية إعادة تدوير 92.4 ٪ من حاوية الحاويات متعددة الأغراض بعد 5 دورات من الامتزاز/الامتزاز. ستلهم نتائج هذه الدراسة إنتاجًا أكثر استدامة وفعالية من حيث التكلفة للمواد الماصة المغناطيسية، بما في ذلك تلك المستمدة من تدفقات نفايات البلاستيك والكتلة الحيوية مجتمعة.

Country
United Kingdom
Keywords

Biomass (ecology), Pulp and paper industry, Adsorbent, name=SDG 7 - Affordable and Clean Energy, Organic chemistry, /dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production, Oceanography, /dk/atira/pure/sustainabledevelopmentgoals/decent_work_and_economic_growth; name=SDG 8 - Decent Work and Economic Growth, Industrial and Manufacturing Engineering, Engineering, /dk/atira/pure/sustainabledevelopmentgoals/climate_action, Langmuir adsorption model, SDG 13 - Climate Action, Water treatment, /dk/atira/pure/sustainabledevelopmentgoals/climate_action; name=SDG 13 - Climate Action, Recycling, Circular Economy, Water Science and Technology, Adsorption of Water Contaminants, Composite number, Geology, name=SDG 8 - Decent Work and Economic Growth, /dk/atira/pure/sustainabledevelopmentgoals/decent_work_and_economic_growth, Microplastic Pollution in Marine and Terrestrial Environments, Pollution, Raw material, name=SDG 13 - Climate Action, Chemistry, climate change, life cycle assessment (LCA), Physical Sciences, Global E-Waste Recycling and Management, Sorption, Pyrolysis, Composite material, NetZero, Sorbent, Biomass pyrolysis, /dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production; name=SDG 12 - Responsible Consumption and Production, Char, Environmental science, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Chemical engineering, plastic waste, biochar, SDG 7 - Affordable and Clean Energy, Waste management, FOS: Chemical engineering, name=SDG 12 - Responsible Consumption and Production, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy, SDG 8 - Decent Work and Economic Growth, FOS: Earth and related environmental sciences, Materials science, 620, Environmental Science, magnetic materials, Desorption, Adsorption, SDG 12 - Responsible Consumption and Production

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 1%
Top 10%
Top 1%
Green
hybrid