
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Integration of Molybdenum-Doped, Hydrogen-Annealed BiVO4 with Silicon Microwires for Photoelectrochemical Applications

H-BiVO4-x :Mo was successfully deposited on microwire-structured silicon substrates, using indium tin oxide (ITO) as an interlayer and BiOI prepared by electrodeposition as precursor. Electrodeposition of BiOI, induced by the electrochemical reduction of p-benzoquinone, appeared to proceed through three stages, being nucleation of particles at the base and bottom of the microwire arrays, followed by rapid (homogeneous) growth, and termination by increasing interfacial resistances. Variations in charge density and morphology as a function of spacing of the microwires are explained by (a) variations in mass transfer limitations, most likely associated with the electrochemical reduction of p-benzoquinone, and (b) inhomogeneity in ITO deposition. Unexpectedly, H-BiVO4-x :Mo on microwire substrates (4 μm radius, 4 to 20 μm spacing, and 5 to 16 μm length) underperformed compared to H-BiVO4-x :Mo on flat surfaces in photocatalytic tests employing sulfite (SO3 2-) oxidation in a KPi buffer solution at pH 7.0. While we cannot exclude optical effects, or differences in material properties on the nanoscale, we predominantly attribute this to detrimental diffusion limitations of the redox species within the internal volume of the microwire arrays, in agreement with existing literature and the observations regarding the electrodeposition of BiOI. Our results may assist in developing high-efficiency PEC devices.
- University of Twente Netherlands
- MESA+ Institute for Nanotechnology Netherlands
- MESA+ Institute for Nanotechnology Netherlands
PEC devices, Silicon geometry, Chemistry(all), Sustainability and the Environment, Performance, UT-Hybrid-D, Chemical Engineering(all), BiVO, Environmental Chemistry, SDG 7 - Affordable and Clean Energy, Renewable Energy, BiOI, Sulfite oxidation
PEC devices, Silicon geometry, Chemistry(all), Sustainability and the Environment, Performance, UT-Hybrid-D, Chemical Engineering(all), BiVO, Environmental Chemistry, SDG 7 - Affordable and Clean Energy, Renewable Energy, BiOI, Sulfite oxidation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
