Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CNR ExploRAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CNR ExploRA
Article . 2010
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2010
Data sources: IRIS Cnr
Biochemistry
Article . 2010 . Peer-reviewed
Data sources: Crossref
Biochemistry
Article . 2010
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Band Shape Heterogeneity of the Low-Energy Chlorophylls of CP29: Absence of Mixed Binding Sites and Excitonic Interactions

Authors: Belgio E; Casazza AP; Zucchelli G; Garlaschi FM; Jennings RC;

Band Shape Heterogeneity of the Low-Energy Chlorophylls of CP29: Absence of Mixed Binding Sites and Excitonic Interactions

Abstract

A number of spectroscopic characteristics of three almost isoenergetic, red-shifted chlorophylls (chls) in the PS II antenna complex CP29 are investigated with the aim of (i) determining whether their band shapes are substantially identical or not, (ii) addressing the topical problem of whether they are involved in excitonic interactions with other chls, and (iii) establishing whether their binding sites may be defined as "mixed" with respect to their capacity to bind chls a and b. The three chls A2-CHL612, A3-CHL613, and B3-CHL614 were analyzed after in vitro apoprotein-pigment reconstitution using the CP29 coding sequence from Arabidopsis thaliana for both the wild-type and mutant complexes. Difference spectra thermal broadening analyses indicated that the half-bandwidths varied between 12 and 15 nm (at room temperature), due mainly to differences in the optical reorganization energy (25-40 cm(-1)). Moreover, only the A2 chl displayed an intense vibrational band in the 300-600 cm(-1) interval from the 0-0 transition. We conclude that within the red absorbing (approximately 680 nm) antenna chls of a single chl-protein complex a marked spectral band shape heterogeneity exists. By analysis of the absorption and circular dichroism spectra no evidence was found of significantly strong excitonic interactions. The single gene mutation of the A3 and B3 binding sites causes absorption changes in both the long wavelength chl a absorbing region and in the chl b spectral region. This has previously been observed and was attributed to "mixed" chl a/b binding sites [Bassi, R., Croce, R., Cugini, D., and Sandona, D. (1999) Proc. Natl. Acad. Sci. U.S.A. 96,10056-10061]. This interpretation, while in principle not being unreasonable, is shown to be incorrect for these two chls.

Country
Italy
Keywords

Chlorophyll, Binding Sites, Arabidopsis Proteins, Chlorophyll A, Arabidopsis, Light-Harvesting Protein Complexes, Photosystem II Protein Complex, Recombinant Proteins, Chloroplast Proteins, Spectrometry, Fluorescence, Energy Transfer, Ribonucleoproteins, Mutagenesis, Site-Directed, Apoproteins, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Top 10%
Green
Related to Research communities
Energy Research