
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Electrochemical Growth of Micrometer-Thick Oxide on SiC in Acidic Fluoride Solution

doi: 10.1021/cm900374s
Anodic polarization of SiC atmodest potential in dilute fluoride solution of pH 3 surprisingly gives rise to the growth of micrometer-thick surface layers, clearly revealed with scanning electron microscopy. The reaction occurs at p-type SiC in the dark and at n-type SiC under (supra)bandgap illumination. The surface layer was shown by Rutherford backscattering spectrometry (RBS) to consist of silicon dioxide and to contain excess oxygen. Elastic recoil detection (ERD) indicated only a low level of carbon and fluoride in the layer but a considerable content of hydrogen. The growth kinetics was characterized in situ by spectroscopic ellipsometry and electrical impedance spectroscopy. The results suggest the formation of a duplex layer: a thin inner dielectric oxide and a thick hydrated outer oxide. The latter must have a considerable degree of porosity to allow diffusion/ migration of reactants and products during oxide growth.
- University of Twente Netherlands
- Utrecht University Netherlands
METIS-258671, IR-75153
METIS-258671, IR-75153
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
