
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Nitrogen, Sulfur, and Chlorine Transformations during the Pyrolysis of Straw

doi: 10.1021/ef1007215
Transformation of nitrogen, sulfur, and chlorine during straw pyrolysis at temperatures from 35 to 1450 °C was investigated by using the coupled thermogravimetry−differential scanning calorimetry−mass spectrometry (TG-DSC-MS) techniques and compared with that of coal. The characteristics of the residual solid char from the straw were analyzed using x-ray diffraction (XRD). Results show that all the nitrogen species (HCN, NH3, HNCO, and CH3CN), chloric species (HCl and Cl2), and sulfur species (SO2, H2S and COS) began to release from straw from 200 °C, compared with 350 °C for the case of coal. Most of the gaseous species from the straw were released in the form of a sharp peak, compared with the coal which has a much wider peak. NH3 and HNCO were the primary nitrogen species for both straw and coal; however for the straw the amount of NH3 released was much higher than that of HNCO. Sulfur species from the straw pyrolysis are sparse, and there was only a little COS released. During coal pyrolysis no COS wa...
- Xi’an Jiaotong-Liverpool University China (People's Republic of)
- Xi'an Jiaotong University China (People's Republic of)
- University of Leeds United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
