Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life Cycle Environmental and Economic Tradeoffs of Using Fast Pyrolysis Products for Power Generation

Authors: Akwasi A. Boateng; Sabrina Spatari; Andrew J. McAloon; Charles A. Mullen; Ghasideh Pourhashem;

Life Cycle Environmental and Economic Tradeoffs of Using Fast Pyrolysis Products for Power Generation

Abstract

Bio-oils produced from small-scale pyrolysis may have economic and environmental benefits for both densifying agricultural biomass and supplying local bioenergy markets with fossil energy alternatives to support state policies (e.g., Renewable Portfolio Standards). We analyze the life cycle greenhouse gas (GHG), energy, and cost tradeoffs for farm-scale bio-oil production via fast pyrolysis of corn stover feedstock and subsequent utilization for power generation in the state of Pennsylvania. We evaluate the life cycle ramifications of either cofiring the biochar coproduct with coal in existing power plants for energy generation, or using the biochar as a land amendment within the agricultural sector. The results show GHG emissions of 217 and 84 g CO2e per kWh of bio-oil electricity for coal cofiring and land amendment, respectively. Cofiring biochar with coal displaces more fossil energy than does land application. We discuss the potential for bio-oil and biochar penetrating near-term electricity markets ...

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%