
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Efficient Fuel Pretreatment: Simultaneous Torrefaction and Grinding of Biomass

doi: 10.1021/ef401787q
Combining torrefaction and grinding of biomass in one reactor may be an attractive fuel pretreatment process. A combined laboratory torrefaction and ball mill reactor has been constructed for studies of the influence of temperature and residence time on the product yields and particle size reductions of Danish wheat straw, spruce chips, and pine chips. On the basis of initial experiments, which evaluated the influence of reactor mass loading, gas flow, and grinding ball size and material, a standard experimental procedure was developed. The particle size reduction capability of the torrefaction process has been evaluated by the relative change in d50, and this method was compared to the Hardgrove grindability index (HGI), showing reasonably similar results. Significant differences in torrefaction behavior have been observed for straw and spruce chips torrefied at 270–330 °C. Torrefaction of straw for 90 min yielded a higher mass loss (27–60 wt %) and relative size reduction (59–95%) compared with spruce (...
- Technical University of Denmark Denmark
- Universiti Malaysia Terengganu Malaysia
- Universiti Malaysia Pahang Malaysia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
