Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gasification of Miscanthus x giganteus in an Air-Blown Bubbling Fluidized Bed: A Preliminary Study of Performance and Agglomeration

Authors: Gang Xue; Marzena Kwapinska; Alen Horvat; Zhonglai Li; Stephen Dooley; Witold Kwapinski; James J. Leahy;

Gasification of Miscanthus x giganteus in an Air-Blown Bubbling Fluidized Bed: A Preliminary Study of Performance and Agglomeration

Abstract

Gasification of Miscanthus x giganteus (MxG) was conducted in an air-blown bubbling fluidized bed (BFB) gasifier using magnesite as bed material and a moderate rate of biomass throughput (246.82–155.77 kg/m2h). The effect of equivalence ratio (ER) (0.234–0.372) and bed temperature (645–726 °C) on the performance of gasification was investigated. The results reveal that MxG is a promising candidate for energy production via BFB gasification; of the conditions tested, the optimal ER and temperature are approximately 0.262 and 645 °C, where no sign of agglomeration was found. The product gas from this condition has a higher heating value of 6.27 MJ/m3, a gas yield of 1.65 N m3/kgbiomass (39.5% of CO and 18.25% of H2 on N2 free basis), a carbon conversion efficiency of 94.81% and a hot gasification efficiency of 78.76%. Agglomeration was observed at some higher temperature conditions and believed to be initiated by the formation of fuel-ash derived low melting temperature K-rich (potassium) silicates (amorpho...

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%