Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrate Formation in Gas-Dominant Systems Using a Single-Pass Flowloop

Authors: Karen A. Kozielski; Eric F. May; Zachary M. Aman; Mauricio Di Lorenzo; Mauricio Di Lorenzo; Michael L. Johns; Gerardo Alonso Sanchez Soto;

Hydrate Formation in Gas-Dominant Systems Using a Single-Pass Flowloop

Abstract

A 130 ft single-pass, gas-dominant flowloop has been constructed to study hydrate formation in an annular flow regime by exposing warm process fluids to a cold pipe wall. Hydrate was formed in six experiments from a natural gas mixture, with 6–18 °F subcooling from hydrate equilibrium. At lower subcooling values a stenosis-type hydrate film growth model without adjustable parameters was used to estimate the resulting pressure drop and yielded an average deviation of 15.8 psi from the experimental value. The accuracy of this model decreases appreciably with increasing subcooling, suggesting the occurrence of a transition after which the pressure drop becomes dominated by additional hydrate phenomena such as particle deposition or wall sloughing. For experiments with 18 °F subcooling, the pressure drop signal contained periodic peak-and-trough behavior and the primary hydrate restriction was observed to migrate downstream at a rate of 3 ft/min over the course of the experiment. Average hydrate growth rates ...

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    121
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
121
Top 1%
Top 10%
Top 10%