Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NRC Publications Arc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy & Fuels
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gas Hydrate Formation in a Variable Volume Bed of Silica Sand Particles

Authors: Linga, Praveen; Haligva, Cef; Nam, Sung Chan; Ripmeester, John A.; Englezos, Peter;

Gas Hydrate Formation in a Variable Volume Bed of Silica Sand Particles

Abstract

Gas hydrate formation was studied in a new apparatus designed to accommodate three different size volume beds of silica sand particles. The sand particles have an average diameter equal to 329 μm. The hydrate was formed in the water, which occupied the interstitial space of the water-saturated silica sand bed. A bulk gas phase was present above the bed (gas cap). Gas uptake measurements were carried out during experiments at constant temperature. More than 74.0% of water conversion to hydrate was achieved in all experiments conducted with methane at 4.0 and 1.0 °C. An initial slow growth was followed by a rapid hydrate growth rate of equal magnitude for nearly all experiments until 43−53% of water was converted to hydrate. During the third and final growth stage, the final conversions were between 74 and 98% and the conversion dynamics changed. Independent verification of hydrate formation in the sand was achieved via Raman spectroscopy and morphology observations in experiments using the same sand/water ...

Country
Canada
Keywords

hydrate, spectroscopy, methane, interstitial, gas hydrate formation, silica, morphology, sand particles, magnitude, water conversion, volume beds

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    238
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
238
Top 1%
Top 1%
Top 10%